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Abstract

A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as
a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum

models. It has been shown that this substitution may be accomplished by equating the molecular potential energy of a nano-struc-
tured material with the strain energy of representative truss and continuummodels. As important examples with direct application to
the development and characterization of single-walled carbon nanotubes and the design of nanotube-based structural devices, the
modeling technique has been applied to two independent examples: the determination of the effective-continuum geometry and

bending rigidity of a graphene sheet. A representative volume element of the chemical structure of graphene has been substituted
with equivalent-truss and equivalent-continuum models. As a result, an effective thickness of the continuum model has been
determined. The determined effective thickness is significantly larger than the inter-planar spacing of graphite. The effective bending

rigidity of the equivalent-continuum model of a graphene sheet was determined by equating the molecular potential energy of the
molecular model of a graphene sheet subjected to cylindrical bending (to form a nanotube) with the strain energy of an equivalent-
continuum plate subjected to cylindrical bending.# 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Nanotechnology

1. Introduction

Nano-structured materials have generated consider-
able interest in the materials research community in the
last few years partly due to their potentially remarkable
mechanical properties [1]. In particular, materials such
as carbon nanotubes, nanotube and nanoparticle-rein-
forced polymers and metals, and nano-layered materials
have shown considerable promise. For example, carbon
nanotubes could potentially have a Young’s modulus as
high as 1 TPa and a tensile strength approaching 100
GPa. The design and fabrication of these materials are
performed on the nanometer scale with the ultimate
goal to obtain highly desirable macroscopic properties.
One of the fundamental issues that needs to be

addressed in modeling macroscopic mechanical beha-
vior of nano-structured materials based on molecular

structure is the large difference in length scales. On the
opposite ends of the length scale spectrum are compu-
tational chemistry and solid mechanics, each of which
consists of highly developed and reliable modeling
methods. Computational chemistry models predict
molecular properties based on known quantum interac-
tions, and computational solid mechanics models pre-
dict the macroscopic mechanical behavior of materials
idealized as continuous media based on known bulk
material properties. However, a corresponding model
does not exist in the intermediate length scale range. If a
hierarchical approach is used to model the macroscopic
behavior of nano-structured materials, then a metho-
dology must be developed to link the molecular struc-
ture and macroscopic properties.
In this paper, a methodology for linking computa-

tional chemistry and solid mechanics models has been
developed. This tool allows molecular properties of
nano-structured materials obtained through molecular
mechanics models to be used directly in determining the
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corresponding bulk properties of the material at the
macroscopic scale. The advantages of the proposed
method are its simplicity and direct connection with
computational chemistry and solid mechanics.
In addition, the proposed method has been demon-

strated with two independent examples that have direct
application to the development and characterization of
single-walled carbon nanotubes (SWNT). First, the
effective geometry of a graphene sheet has been deter-
mined. A representative volume element (RVE) of the
graphene layer has been modeled as a continuous plate
with an effective thickness that has been determined
from the bulk in-plane properties of graphite [2]. Sec-
ond, the effective bending rigidity of a graphene sheet
has been determined. The bending rigidity of the elastic

plate has been described in terms of the atomic interac-
tions that dominate the overall bending behavior.

2. Carbon nanotubes

In 1991 Iijima [3] obtained transmission electron
micrographs of elongated, nano-sized carbon particles
that consisted of cylindrical graphitic layers, known
today as carbon nanotubes (Fig. 1). Since then, carbon
nanotubes have become a primary focus in nanotechnol-
ogy research due to their apparent exceptionally high
stiffness and strength [1]. One of the fundamental issues
that scientists and engineers are confronting is the char-
acterization of the mechanical behavior of individual

Nomenclature

Molecular model and force field
Eel Non-bonded electrostatic potential energy
Eg Molecular potential energy of graphene sheet
Ensm Potential energy of nano-structured material
EvdW Non-bonded van der Waals potential energy
E� Bond-angle variation potential energy
E� Bond stretching potential energy
E� Bond torsion potential energy
E! Bond inversion potential energy
K�

m Force constant associated with the stretching
of bond m

K �
m Force constant associated with angle varia-

tion of bond angle m
K! Force constant associated with bond inver-

sion
K! Modified force constant associated with

bond inversion
L Length of carbon nanotube
N Number of atoms per carbon nanotube
p Total number of carbon atoms in carbon

structure
� Interatomic spacing of carbon atoms in gra-

phite
rnt Radius of carbon nanotube
��p Average inversion angle (radians)
��� Angle between � and � bonds
�m Deformed bond-angle m
�m Equilibrium bond-angle m
�m Deformed bond length of bond m
�m Equilibrium bond length of bond m

Truss and continuum models
a Elastic rod type of outer portion of truss

representative volume element

An
m Cross-sectional area of rod m of truss mem-

ber type n
Ant Cross-sectional area of carbon nanotube
b Elastic rod type of inner portion of truss

representative volume element
D Bending rigidity of a continuum plate
I Moment of inertia of a continuum plate
rnm Deformed distance between joints of rod m

of truss member type n
Rn

m Undeformed distance between joints of rod
m of truss member type n

t Thickness of a continuum plate (wall thick-
ness of continuum tube)

Yg Young’s modulus of graphene sheet
Yn

m Young’s modulus of rod m of truss member
type n

Ynt Young’s modulus of carbon nanotube
rc Mid-plane radius of continuum nanotube

wall
rci Inner radius of continuum nanotube wall
rco Outer radius of continuum nanotube wall
�c Mechanical strain energy of the continuum

model
�t Mechanical strain energy of the truss model
	 Poisson’s ratio of graphene sheet

Boundary conditions
ui Displacement components of equivalent-

continuum representative volume element
xi Cartesian coordinate system of the repre-

sentative volume element
"ij Strain components in the equivalent-con-

tinuum representative volume element
" Applied strain
� Applied shear strain
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carbon nanotubes. Two independent components of this
issue, the wall thickness and bending rigidity of carbon
nanotubes, are discussed below.

2.1. Wall thickness

Many experimental [4–8] and theoretical [9–14] stud-
ies have been performed on single- and multi-walled
carbon nanotubes. In particular, deformation modes
and nanotube stiffnesses have been closely examined.
Physical properties, such as effective cross-sectional

area and moment of inertia, and mechanical properties,
such as Young’s modulus and Poisson’s ratio, are tra-
ditionally associated with the macroscopic-length scale,
where the characteristic dimensions of a continuum
solid are well defined. The determination of these prop-
erties has been attempted in many of the studies cited
above without proper regard to an acceptable definition
of the nanotube geometry. Accurate values of macro-
scopic physical and mechanical properties are crucial in
establishing a meaningful link between nanotube prop-
erties and the properties of larger structures, such as
nanotube-reinforced polymer composites. Therefore,
caution should be used when applying continuum-type
properties to nano-structured materials.
In many studies, it has been assumed that the nano-

tube ‘‘wall thickness’’ is merely the inter-planar spacing
of two or more graphene sheets [5,8–13], which is about
0.34 nm in single-crystal graphite. While this simple
idealization appears to have intuitive merit, it does not
necessarily reflect the effective thickness that is repre-
sentative of continuum properties. In order to avoid this
problem, Hernandez et al. [10] proposed the use of a
specific Young’s modulus, i.e., Young’s modulus per
unit thickness. Even though this approach is convenient
for studies concerned with the relative stiffnesses of
nanotubes, it is of little use when modeling a nanotube
as a continuum structure. Another proposed solution to
this dilemma is to assume that the nanotube is a solid
cylinder [15,16]. This method is certainly convenient,

however, significant inconsistencies arise when compar-
ing moduli data of single wall nanotubes (SWNT) and
multi-walled nanotubes (MWNT) when both are
assumed to be solid cylinders.
It follows that in order to properly model the

mechanical behavior of a SWNT using continuum
mechanics, the effective geometry must be known. If the
nanotube is modeled as a continuous hollow cylinder
with an effective wall thickness, then a simple first step is
to model the flat graphene sheet in order to determine
the effective wall thickness. In the current study, the
effective thickness will be calculated as an example of
the proposed modeling approach.

2.2. Bending rigidity

Due to the aspect ratio and tube-like geometry of
SWNT, many studies have been conducted concerning
the buckling and bending response of nanotubes using
both theoretical [12,15,17–20] and experimental [21,22]
approaches. In particular, Overney et al. [17] conducted
a computational study and calculated a bending para-
meter of a graphene sheet based on the vibrational
modes of a nanotube. Yakobson et al. [18] used com-
putational methods to study the buckling of carbon
nanotubes. They modeled the nanotubes as shells with a
bending rigidity proportional to the Young’s modulus
and shell-wall thickness. Using the computationally
obtained bending parameters, they calculated the
Young’s modulus and wall thickness of the shell.
Govindjee and Sackman [19] theoretically investigated
the validity of continuum mechanics at the nano-scale
by examining the bending of multi-walled carbon
nanotubes. They also assumed that the bending rigidity
of each layer is proportional to the Young’s modulus
and moment of inertia. In each of these studies it is clear
that the bending and buckling behavior of carbon
nanotubes is highly dependent on the bending proper-
ties of the graphene sheet. Therefore, it follows that the
bending behavior of a graphene sheet must be well-
understood, and should be described in terms of the
atomic properties of graphene.
According to the classical elasticity theory, it is

assumed that the bending rigidity, D, of an isotropic
solid is related to the cross-sectional geometry and the
in-plane modulus [23]:

D ¼
Ygt3

12 1� 	2ð Þ
ð1Þ

and

D ¼ YgI ð2Þ

which are for the bending of plates and beams, respec-
tively. In Eqs. (1) and (2), Yg, 	, I, and t are the Young’s

Fig. 1. End section of a single-walled carbon nanotube.
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modulus, Poisson’s ratio, moment of inertia, and plate
thickness of a graphene sheet, respectively. It seems
logical that these equations could describe the bending
properties of graphene sheets and nanotubes due to
geometric similarities to solid plates and/or beams.
However, Ru [20] has pointed out that a discrepancy
exists in the use of Eq. (1) when describing bending
properties of carbon nanotubes. If the bending rigidity
described by this equation is used in the bending analy-
sis of carbon nanotubes, then an equivalent wall thick-
ness must be used that is very small compared to the
inter-planar spacing of graphene sheets. For example,
Yakobson et al. [18] showed that the bending rigidity of
carbon nanotubes is much smaller than that described
by Eq. (1) if the typically assumed effective thickness of
0.34 nm (the inter-plane spacing of layers of graphite) of
graphene sheets is used. They derived an effective
thickness and Young’s modulus of 0.066 nm and 5.5
Tpa, respectively, for a SWNT. The argument of Ru
[20] is further supported by examining the chemical
structure of a graphene sheet. At first glance, it appears
that a graphene sheet would have very little bending
rigidity since the atomic C–C bonds lie very close to the
neutral axis during cylindrical bending, unlike con-
tinuous elastic plates in which there is material that is
not on the neutral axis that contributes a resistance in
bending that is proportional to the in-plane Young’s
modulus [Eqs. (1) and (2)]. Therefore, the primary
atomic bonds, which are the main contribution to the
in-plane elastic properties of graphene, should provide
little, perhaps negligible, contribution to the bending
rigidity of graphene sheets. The resistance to bending
must be due to a different atomic interaction, which is
discussed in Section 5.

3. Modeling procedure

The proposed method of modeling nano-struc-
tured materials with an equivalent-continuum is
outlined below. Since the approach uses the energy
terms that are associated with molecular mechanics
modeling, a brief description of molecular mechan-
ics is given first followed by an outline of the
equivalent-truss and equivalent-continuum model
development.

3.1. Molecular mechanics

An important component in molecular mechanics
calculations of the nano-structure of a material is the
description of the forces between individual atoms. This
description is characterized by a force field. In the most
general form, the total molecular potential energy, Ensm,
for a nano-structured material is described by the sum
of many individual energy contributions:

Ensm ¼
X

E� þ
X

E � þ
X

E � þ
X

E!

þ
X

EvdW þ
X

E el ð3Þ

where E�, E�, E�, and E! are the energies associated
with bond stretching, angle variation, torsion, and
inversion, respectively (the reader should refer to a
molecular mechanics text, e.g. [24], for a detailed
description of these energy terms). The nonbonded
interaction energies consist of van der Waals, EvdW, and
electrostatic, Eel, terms. The summation occurs over all
of the corresponding interactions in the considered
volume of the nano-structured material. Various func-
tional forms may be used for these energy terms
depending on the particular material and loading con-
ditions considered [24]. Obtaining accurate parameters
for a force field amounts to fitting a set of experimental
or calculated data to the assumed functional form, spe-
cifically, the force constants and equilibrium structure.
In situations where experimental data are either una-
vailable or very difficult to measure, quantum mechan-
ical calculations can be a source of information for
defining the force field.

3.2. Truss model

In order to simplify the calculation of the total mole-
cular potential energy of molecular models with com-
plex molecular structures and loading conditions, an
intermediate model may be used to substitute for the
molecular model. Due to the nature of molecular force
fields, a pin-jointed truss model may be used to repre-
sent the energies given by Eq. (3), where each truss
member represents the forces between two atoms.
Therefore, a truss model allows the mechanical behavior
of the nano-structured system to be accurately modeled
in terms of displacements of the atoms. This mechanical
representation of the lattice behavior serves as an inter-
mediate step in linking the molecular potential with an
equivalent-continuum model. In the truss model, each
truss element corresponds to a chemical bond or a sig-
nificant non-bonded interaction. The stretching poten-
tial of each bond corresponds with the stretching of the
corresponding truss element. Traditionally, atoms in a
lattice have been viewed as masses that are held in place
with atomic forces that resemble elastic springs [25].
Therefore, bending of truss elements is not needed to
simulate the chemical bonds, and it is assumed that each
truss joint is pinned, not fixed.
The mechanical strain energy, �t, of the truss model is

expressed in the form:

�t ¼
X
n

X
m

An
mY

n
m

2Rn
m

rnm � Rn
m

� �2
ð4Þ
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where An
m and Yn

m are the cross-sectional area and
Young’s modulus, respectively, of rod m of truss mem-
ber type n. The term rnm � Rn

m

� �
is the stretching of rod m

of truss member type n, where Rn
m and rnm are the unde-

formed and deformed lengths of the truss elements,
respectively.
In order to represent the chemical behavior with the

truss model, Eq. (4) must be equated with Eq. (3) in a
physically meaningful manner. Each of the two equa-
tions are sums of energies for particular degrees of
freedom. The main difficulty in the substitution is spe-
cifying Eq. (4), which has stretching terms only, for Eq.
(3), which also has bond-angle variance and torsion
terms. No generalization can be made for overcoming
this difficulty for every nano-structured system. A fea-
sible solution must be determined for a specific nano-
structured material depending on the geometry, loading
conditions, and degree of accuracy sought in the
model.

3.3. Equivalent-continuum model

For many years, researchers have developed meth-
ods of modeling large-area truss structures with
equivalent-continuum models [26–31]. These studies
indicate that various methods and assumptions have
been employed in which equivalent-continuum models
have been developed that adequately represent truss
structures. In general, the equivalent-continuum
model is defined as a continuum that has the follow-
ing characteristics:

1. Truss lattices with pinned joints are modeled as
classical continua where micropolar [32] con-
tinuum assumptions are not necessary.

2. Local deformations are accounted for.
3. The temperature distribution, loading and
boundary conditions of the continuum model
simulate those of the truss model.

4. The same amount of thermoelastic strain energy
is stored in the two models when deformed by
identical static loading conditions.

The parameters of the equivalent-continuum model,
such as the elastic properties and geometry, are deter-
mined based on the above characteristics. In some cases
the strain energy of the continuum, �c, can be easily
formulated analytically and compared directly with Eq.
(4) to obtain the equivalent-continuum properties. In
other cases, especially with complex geometries and
deformations, numerical tools need to be used to deter-
mine the continuum parameters. Once the properties of
the equivalent-continuum model have been determined,
the mechanical behavior of larger structures consisting
of the nano-structured material may be predicted using
the standard tools of continuum mechanics.

4. Example 1: effective geometry of a graphene sheet

In this section, a graphene sheet is modeled as a con-
tinuous plate with a finite thickness that represents the
effective thickness for the determination of continuum-
type mechanical and physical properties. By using the
methodology described above, the molecular mechanics
model is substituted with a truss model and subse-
quently an equivalent-plate model. The continuum
model may then be used in further solid mechanics-
based analyses of SWNT.

4.1. Representative volume element

To reduce the computational time associated with
modeling the graphene sheet, a representative volume
element (RVE) for graphene was used in this study
(Fig. 2). The selected RVE allows each degree of free-
dom of the carbon atom associated with bond stretching
and bond-angle variation in the hexagonal ring to be
completely modeled by truss and continuum finite ele-
ment model nodal-displacement degrees of freedom.
Also, this RVE allows the displacements on the bound-
ary of the proposed chemical, truss, and continuum
models to correspond exactly. Furthermore, macro-
scopic loading conditions applied to a continuous gra-
phene plate can be easily reduced to periodic boundary
conditions that are applied to the RVE.

4.2. Molecular mechanics model

The specific forms of the energy terms in Eq. (3) used
in this example were taken from the AMBER force field
of Kollman and coworkers [33,34]. Due to the nature of
the material and loading conditions in the present study,
only the bond stretching and bond-angle variation
energies were included. Torsion, inversion, and non-
bonded interactions were assumed to be negligible for
the case of a graphene lattice subjected to small
deformations. For this example, the molecular poten-
tial energy of a graphene sheet with carbon-to-carbon
bonds is expressed as a sum of simple harmonic
functions:

Fig. 2. Representative volume element of a graphene sheet.
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Eg ¼
X
m

K�
m �m � �mð Þ

2
þ
X
m

K �
m �m ��mð Þ

2
ð5Þ

where the terms �m and �m refer to the undeformed
interatomic distance of bond m and the undeformed
bond-angle m, respectively. The quantities �m and �m
are the bond length and angle after stretching, respec-
tively (see Fig. 3). K�

m and K �
m are the force constants

associated with the stretching and angle variance of
bond and bond-angle m, respectively. Using the para-
meters for the AMBER force field [33], the force con-
stants used in this example are:

K� ¼ 46900
kcal

mol�nm2
¼ 3:26�10�7

nJ

bond�nm2

K � ¼ 63
kcal

mol�rad2
¼ 4:38�10�10

nJ

angle�rad2
ð6Þ

The equilibrium bond length, �m, is 0.140 nm, and the
undeformed bond-angle, �m, is 120.0

�.

4.3. Truss model

In order to express the mechanical strain energy, �t,
of the truss model in terms of the variable truss joint
angles that are specified in molecular mechanics
(�m��m), the RVE has been modeled with additional
rods between nearly adjacent joints to represent the
interaction between the corresponding carbon atoms
(Fig. 3). In order to represent the chemical model, which
has bond stretching and variable angles as degrees of
freedom, with a truss model that has stretching degrees
of freedom only, two types of elastic rods, a and b, are
incorporated into the truss RVE. Alternatively, a tor-
sional spring element may be used to model the bond-
angle variation, however, the number of degrees of

freedom of every truss joint (and the complexity of the
model) is significantly increased.
The mechanical strain energy, �t, of the discrete truss

system shown in Fig. 3 is expressed in the form of Eq.
(4) as:

�t ¼
X
m

Aa
mY

a
m

2Ra
m

ram � Ra
m

� �2
þ
X
m

Ab
mY

b
m

2Rb
m

rbm � Rb
m

� �2
ð7Þ

where the superscripts correspond to rod types a and b,
respectively. Comparing Eqs. (5) and (7), it is clear that
the bond stretching term in the Eq. (5) can be related to
the first term of Eq. (7) for the rods of type a:

K�
m ¼

Aa
mY

a
m

2Ra
m

ð8Þ

where it is assumed that �m ¼ ram and �m ¼ Ra
m. How-

ever, the second terms in Eqs. (5) and (7) cannot be
related directly. In order to equate the constants, the
chemical bond-angle variation must be expressed in
terms of the elastic stretching of the truss elements of
type b. For simplicity, it may be assumed that the pre-
scribed loading conditions consist of small, elastic
deformations only, even though, in general, the pro-
posed modeling approach could be applied to larger
deformations. This assumption is not an over-simplifi-
cation for the graphene sheet since the deformations for
highly stiff linear-elastic materials subjected to many
practical loading conditions are quite small.
In order to express the Young’s modulus of the rods of

type b in terms of the bond-angle force constant, a rela-
tionship between the change in the bond angle and the
corresponding change in length of the type b truss element
is required. If it is assumed that the changes in bond angle
are small, then it can be easily shown that (see Fig. 4):

�m ��m �
2 rbm � Rb

m

� �
Ra

m

ð9Þ

Fig. 3. Representative volume elements for the chemical, truss, and continuum models.
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The right-hand side of Eq. (9) is four times larger than
the right hand side of Eq. (8) given by Odegard et al.
[35]. This discrepancy is due to an improvement in the
assumptions used to derive Eq. (9) in the current study.
Substitution of Eq. (9) into Eqs. (5) and (7) results in the
following approximation:

K �
m ¼

Rb
mA

b
mY

b
m

24
ð10Þ

Therefore, the Young’s moduli of the two rod types
are:

Ya
m ¼

2K�
mR

a
m

Aa
m

Yb
m ¼

24K �
m

Rb
mA

b
m

ð11Þ

The strain energy of the truss model may then be
expressed in terms of the force constants:

Lt ¼
X
m

K� ram � Ra
m

� �2
þ
X
m

12K �

Rb
m

� �2 rbm � Rb
m

� �2
ð12Þ

4.4. Equivalent-plate model

Working with the assumptions discussed herein, the
next step in linking the molecular and continuum mod-
els is to replace the equivalent-truss model with an
equivalent-continuous plate with a finite thickness
(Fig. 3). For this example, it is assumed that the truss
and continuum models are equivalent when the elastic
strain energy stored in the two models are equal under
identical displacement boundary conditions. The value
of the plate thickness that results in equal strain energies
is the assumed effective thickness of the graphene sheet.

While the mechanical properties of the truss elements
have been determined as described above, those of the
graphene sheet were taken from the literature. Values
for the in-plane mechanical properties of graphite have
been measured macroscopically, i.e., without any
assumptions regarding the graphene sheet thickness.
For this example, the values of the Young’s modulus
and Poisson’s ratio of bulk graphite are Yg=1008
GPa and 	=0.145, respectively [2]. For simplicity, it is
assumed that graphite is isotropic since no out-of-
plane deformations are considered here. Given that
there are no consistent data available on the proper-
ties of a single graphene sheet, these properties of the
graphene sheet are based on the in-plane properties of
bulk graphite.

4.5. Boundary conditions

In order to determine an effective plate thickness,
both the truss and continuum models were subjected to
three sets of loading conditions. For each set of loading
conditions, a corresponding effective thickness was
determined. The loading conditions correspond to the
three fundamental in-plane deformations of a plate, that
is, uniform axial tension along x1 and x2 and pure shear
loading in the x1 and x2 plane.
For a uniaxial deformation along the x2 direction

(load case I), the RVE may be subjected to the following
boundary conditions (Fig. 5) [35]:

u1 ¼ �	"x1

u2 ¼ "x2

u3 ¼ �	"x3 ð13Þ

where the displacement components are parallel to the
corresponding RVE coordinates. The total strain energy
can be calculated using [23]:

Fig. 4. Schematic of the deformed geometry of the representative volume element.
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�c ¼
VY g

2 1þ 	ð Þ

	

1� 2	
"2kk þ "ij"ij

h i
ð14Þ

where V is the volume of the RVE, i,j,k=1,2,3 (using
summation notation), and the components of the strain
tensor, "ij, are given by:

"ij ¼
1

2

@uj
@xi

þ
@ui
@xj

� �
ð15Þ

For the RVE under the conditions given in Eq. (13):

�c ¼
3

ffiffiffi
3

p

4
Rað Þ

2tYg"2 ð16Þ

where t is the thickness of the continuum plate. For a
uniaxial deformation along the x1 direction (load case
II), the boundary conditions are (Fig. 6) [35]:

u1 ¼ "x1

u2 ¼ �	"x2

u3 ¼ �	"x3 ð17Þ

The total strain energy of an equivalent-continuum
RVE under this condition is given by Eq. (16). For a
pure shear strain in the x1�x2 plane (Load case III), the
RVE may be subjected to the following boundary con-
ditions (Fig. 7) [35]:

u1 ¼ 0

u2 ¼ �x1

u3 ¼ 0 ð18Þ

The total strain energy of an equivalent-continuum
RVE under this condition is:

�c ¼
3

ffiffiffi
3

p

8
Rað Þ

2t
Yg

1þ 	ð Þ
�2 ð19Þ

4.6. Results and discussion

The strain energy of the truss model was calculated
using a finite element analysis (ANSYS 5.71) for all
three boundary conditions. The strain energies of each
truss element were summed to obtain the total strain
energy for the RVE. The resulting strain energy was
equated with Eq. (16) or (19) for Load cases I and II or

Fig. 5. Load case I: extension along x2.

Fig. 6. Load case II: extension along x1. Fig. 7. Load case III: pure shear.
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III, respectively, and the corresponding effective thick-
ness of the equivalent-continuum plate, t, was deter-
mined. Each extensible rod was modeled using a finite
truss element (LINK1) with two degrees of freedom at
each node (displacements parallel to x1 and x2). The
cross-sectional areas of the type a rods were divided by
a factor of 2, since these rods are sharing their total area
with adjacent RVEs. For Load cases I and II, the
resulting effective thickness was calculated to be 0.69
nm. For Load case III, the effective thickness was 0.57
nm. These values are significantly larger than the widely
accepted value for the graphitic inter-planar spacing,
0.34 nm, and much larger than the value suggested by
Yakobson et al. [18] of 0.066 nm.
It may be assumed that during uniaxial loading of a

carbon nanotube, with the force and strain known, the
Young’s modulus can be calculated using:

Ynt / Ant
� ��1

ð20Þ

where Ant is the cross-sectional area of the hollow con-
tinuum cylinder with a constant mid-plane radius, rc.
The inner radius, rci , and outer radius, r

c
o, of the tube are

(Fig. 8):

rci ¼ rc �
t

2

rco ¼ rc þ
t

2
ð21Þ

where rc5 t=2. The cross-sectional area of the hollow
continuum cylinder is:

Ant ¼ 2�trc ð22Þ

The calculated cross-sectional areas using the effective
thickness values obtained above are shown in Table 1.
The ratios of the calculated Young’s modulus based on
the effective thickness obtained for the three load cases,

their average, and from Yakobson et al. [18], to the
Young’s modulus based on inter-planar spacing, are
also provided in Table 1. It was assumed that the
mechanical properties of the SWNT wall are equal to
those of the equivalent-plate model. The results shown
in Table 1 suggest that measured and calculated values
of mechanical properties of carbon nanotubes that are
dependent on the dimensions of the continuum tube
may differ significantly based on the assumed geometry.

5. Example 2: effective bending rigidity of a graphene

sheet

In this section, a graphene sheet is again modeled as a
continuous plate. The bending rigidity of the plate is
assumed to be independent of the in-plane mechanical
properties and thickness of the plate. By using the pro-
posed modeling method, the molecular mechanics
model is used to determine the effective bending rigidity
of the continuum plate.

5.1. Molecular mechanics model

It has been shown that the only significant change in
the electronic structure of a flat graphene sheet when
subjected to pure bending is the change in the p-orbital
electron density on either side of the graphene sheet (i.e.
inversion, see Fig. 9) [36–41]. This indicates that the
inversion alone contributes to the bending resistance of
graphene sheets. Bakowies and Theil [36] have sug-
gested that the increase in the total molecular potential
energy per carbon atom of a carbon cluster (i.e. a
structure formed by a single plane of carbon atoms,
such as carbon Fullerenes and SWNT) with respect to a
flat graphene sheet may be closely approximated as:

E! ¼ K!��2p ð23Þ

where K! is a force constant and ��p is the average
inversion angle defined as (in radians):

Fig. 8. Geometry of a carbon nanotube and an equivalent-continuum

tube.

Table 1

Ratio of calculated Young’s modulus for different wall thicknesses of

SWNT with respect to the Young’s modulus calculated with the inter-

planar spacing

Continuum wall

thickness (nm)

Continuum

cross-sectional

area (nm2)

Ratio of

Young’s

moduli

Load cases I and II 0.69 4.34rc 0.49

Load case III 0.57 3.58rc 0.60

Average of I, II and III 0.65 4.08rc 0.52

Yakobson et al. (1996) 0.07 0.44rc 4.86

Inter-planar spacing 0.34 2.14rc 1.00
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��p ¼

P
p

��� �
�

2


 �

p
ð24Þ

where p is the total number of carbon atoms in the car-
bon structure considered and ��� is the angle defined in
Fig. 9. For simplicity in the specific case of carbon
nanotubes, the p-orbital axis vector technique [42] can
be used to show that the change in the molecular
potential energy due to inversion can be expressed in
terms of the nanotube radius, rnt:

E! ¼
K!

rntð Þ
2

ð25Þ

where K! is a modified inversion force constant given
by:

K! ¼ 0:0012 rad2nm2
� �

K! ð26Þ

Values of the force constant, K!, have been deter-
mined using computational chemistry data from several
studies [36,43–46] and Eq. (25). Even though the com-
putational chemistry data was obtained for the specific
case of bending of graphene sheets to form complete
nanotubes or nanotube-like structures, the concepts of
structural mechanics can be implemented such that
these values could apply to any bending mode of gra-
phene sheets. The values are shown in Table 2 along
with the overall average, which is:

K! ¼ 0:018
eV�nm2

atom
ð27Þ

The total number of carbon atoms per nanotube is
[43]:

N ¼
4�rntLnt

3�2
ð28Þ

where � is the interatomic spacing of carbon atoms and
Lnt is the nanotube length. Therefore, the total change
in the molecular potential energy of a nanotube due to
inversion is:

E!N ¼
4�LntK!

3�2rnt
ð29Þ

5.2. Equivalent-continuum plate

In the case of a graphene sheet subjected to pure
bending, the total molecular potential energy is easily
described with a single force constant by using Eq. (29),
unlike the example discussed in the previous section
where an intermediate truss model was needed in order
to calculate the strain energy under various loading
conditions. Therefore, the truss model is not needed in
this particular example and an equivalent-continuum
model has been developed by equating the total mole-
cular potential energy of the molecular model and the
strain energy of the continuum plate directly.
The strain energy of a plate of length Lc subjected to

cylindrical curvature (Fig. 8) is [47]:

�c ¼
�DL c

rc
ð30Þ

where rc is the radius of curvature, D is the bending
rigidity, and the superscript c denotes the strain energy
associated with the continuum plate. In this case, D is
not defined by Eqs. (1) or (2) for the reasons discussed
above. In order to determine the bending rigidity of the
equivalent-continuum plate that represents the actual
effective bending rigidity of the graphene sheet, the
strain energy of the continuum plate and the increase in
the total molecular potential energy of the graphene
sheet must be equivalent when subjected to pure bend-
ing. Equating Eqs. (29) and (30) results in:

D ¼
4K!

3�2
ð31Þ

Fig. 9. Bond inversion of carbon atom in a graphene sheet.

Table 2

Values of force constant associated with bond inversion of graphene

sheet

Study K! (eV�nm2/atom)

Bakowies and Thiel [36] 0.016

Robertson et al.—EP1 [43] 0.016

Robertson et al.—EP2 [43] 0.011

Robertson et al.—LDF [43] 0.021

Sawada and Hamada [44] 0.017

Miyamoto et al. [45] 0.020

Hernandez et al. (n,n) [46] 0.021

Hernandez et al. (n,0) [46] 0.022

Average 0.018
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Therefore, the effective bending rigidity is directly
proportional to the inversion force constant and the
inverse square of the interatomic spacing of graphite.
The equivalent bending rigidity for the equivalent-

continuum plate is calculated using Eq. (31) and the
average value of the force constant K!, given in Table 2,
and with �=0.140 nm [2] to give D=1.22 eV. This value
is 44% higher than that used by Yakobson et al. [18]
and Robertson et al. [43] (D=0.85 eV).
The strain energy of a graphene sheet is presented in

Fig. 10 for different nanotube radii for all of the com-
putational chemistry data and the equivalent con-
tinuum plate model. It is assumed that the graphene
sheet behaves elastically in bending for all nanotube
radii. Clearly, the trends of the computational chem-
istry data and the equivalent-continuum model are in
agreement.

6. Summary

A method has been presented for modeling structure-
property relationships of nano-structured materials.
This method serves to link computational chemistry,
which is used to predict molecular properties, and solid
mechanics, which describes macroscopic mechanical
behavior based on bulk material properties. This link is
established by replacing discrete molecular structures
with equivalent-continuum models. It has been shown
that this replacement may be accomplished by equating

the molecular potential energy of nano-structured
materials with the mechanical strain energy of a repre-
sentative continuum model. The development of an
equivalent-truss model may be used as an intermediate
step in establishing the equivalent-continuum model.
The proposed modeling method has been applied to

determine the effective geometry and effective bending
rigidity of a graphene sheet. A representative volume
element (RVE) of the chemical structure of a graphene
sheet has been substituted with RVEs of equivalent-
truss and equivalent-continuum models. As a result, an
effective thickness of the continuum model has been
determined. This effective thickness has been shown to
be significantly larger than the inter-planar spacing of
graphite. The effective bending rigidity of an equiva-
lent-continuum plate model of a graphene sheet was
also determined using the proposed method. The
molecular potential energy of the molecular model of a
graphene sheet subjected to cylindrical bending (to
form a nanotube) was equated with the strain energy of
an equivalent-continuum plate subjected to cylindrical
bending.
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Fig. 10. Strain energy of a graphene sheet subjected to cylindrical bending.
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